理学 >>> 数学 >>> 数理逻辑与数学基础 数论 代数学 代数几何学 几何学 拓扑学 数学分析 非标准分析 函数论 常微分方程 偏微分方程 动力系统 积分方程 泛函分析 计算数学 概率论 数理统计学 应用统计数学 运筹学 组合数学 离散数学 模糊数学 应用数学 数学其他学科
搜索结果: 1-15 共查到数学 Brownian motion相关记录26条 . 查询时间(0.068 秒)
Brownian Brownian Motion I     dispersing billiards  averaging  shadowing       font style='font-size:12px;'> 2015/9/29
A classical model of Brownian motion consists of a heavy molecule submerged into a gas of light atoms in a closed container. In this work we study a 2D version of this model, where the molecule is a...
We consider a passive scalar in a periodic shear flow perturbed by an additive fractional noise with the Hurst exponent H ∈ (0, 1). We establish a diffusive homogenization limit for the tracer when th...
In the paper, the Bismut derivative formula is established for multidimensional SDEs driven by additive fractional noise ($1/2and moreover the Harnack inequality is given. Through a Lamperti t...
This paper is devoted to the construction of a solution for the "Inhomogenous skew Brownian motion" equation, which first appeared in a seminal paper by Sophie Weinryb, and recently, studied by \'{E}t...
Abstract: In this paper we consider stochastic differential equations with non-negativity constraints, driven by a fractional Brownian motion with Hurst parameter $H>\1/2$. We first study an ordinary ...
Abstract: Given a fractional Brownian motion \,\,$(B_{t}^{H})_{t\geq 0}$,\, with Hurst parameter \,$> 1/2$\,\,we study the properties of all solutions of \,\,: {equation} X_{t}=B_{t}^{H}+\int_0^t X_{u...
Abstract: In this paper we consider the Stochastic isothermal, nonlinear, incompressible bipolar viscous fluids driven by a genuine cylindrical fractional Bronwnian motion with Hurst parameter $H \in ...
Abstract: This article is devoted to the construction of a solution for the "skew inhomogeneous Brownian motion" equation, which first appear in a seminal paper by Sophie Weinryb (1983). We investigat...
Abstract: Consider a $d$-dimensional Brownian motion in a random potential defined by attaching a non-negative and polynomially decaying potential around Poisson points. We introduce a repulsive inter...
Abstract: This paper continues a study on trajectories of Brownian Motion in a field of soft trap whose radius distribution is unbounded. We show here for both point-to-point and point-to-plane model ...
Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary t 7→ a + bt, a ≥ 0, b ∈ R, by a reflecting Brownian motion.
The tail of the maximum of Brownian motion minus a parabola     Brownian motion  parabola       font style='font-size:12px;'> 2010/11/23
We give an asymptotic expression for the tail of the maximum of Brownian motion minus a parabola. This confirms a conjecture about the exponential term in the tail behavior, due to Svante Janson.
Is Brownian motion necessary to model high-frequency data?     Brownian motion  high-frequency data       font style='font-size:12px;'> 2010/11/18
This paper considers the problem of testing for the presence of a continuous part in a semimartingale sampled at high frequency. We provide two tests, one where the null hypothesis is that a continuou...
The maximum of Brownian motion minus a parabola     Brownian motion   parabola       font style='font-size:12px;'> 2010/11/8
We derive a simple integral representation for the distribution of the maximum of Brownian motion minus a parabola, which can be used for computing the density and moments of the distribution, both fo...
The greatest convex minorant of Brownian motion, meander, and bridge     convex minorant  Brownian motion       font style='font-size:12px;'> 2010/11/19
This article contains both a point process and a sequential description of the greatest convex minorant of Brownian motion on a finite interval. We use these descriptions to provide new analysis of v...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...