理学 >>> 数学 >>> 泛函分析 >>> 线性算子理论 变分法 拓扑线性空间 希尔伯特空间 函数空间 巴拿赫空间 算子代数 测度与积分 广义函数论 非线性泛函分析 泛函分析其他学科
搜索结果: 1-8 共查到泛函分析 p-Laplacian相关记录8条 . 查询时间(0.078 秒)
We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix, subject to some constrain...
带跳跃非线性项的p-Laplacian问题的结点解     Fuč  ik谱  结点解  跳跃非线性项       font style='font-size:12px;'> 2014/5/5
研究了带跳跃非线性项的p-Laplacian方程结点解的存在性.如果该问题的非线性项跨越其对应齐次问题的Fučik谱,我们证明了该问题至少存在一个结点解.
For a certain domain $\Omega$ in the Sierpinski gasket $\mathcal{SG}$ whose boundary is a line segment, a complete description of the eigenvalues of the Laplacian under the Dirichlet and Neumann bound...
One of the main features of analysis on post-critically finite self-similar (pcfss) sets is that it is possible to understand the behavior of the Laplacian and its inverse, the Green operator, in te...
In this note, we extend some results in a previous paper on the inverse nodal problem and Ambarzumyan problem for the p-Laplacian to periodic or anti-periodic boundary conditions, and to L1 potentials...
一类一维p-Laplacian 算子两点边值问题的正解个数     p-Laplacian 算子  两点边值问题  正解       font style='font-size:12px;'> 2009/9/21
讨论了一类含有一维p-Laplacian算子的两点边值问题正解的个数.
Global Estimates in Orlicz Spaces for p-Laplacian Systems of in R^N     Orlicz space  Global  Gradient  p-Laplacian  system       font style='font-size:12px;'> 2015/5/4
Abstract. In this paper we obtain global estimates in Orlicz spaces for weak solutions of p-Laplacian systems in R N for N ≥ 2. Our results improve the known results for such problems.
The purpose of this paper is to obtain the estimate for the average mean value of the remainder term of the asymptotic formula for the quadratic mean value of the Fourier coefficients of the eigenfunc...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...