搜索结果: 1-15 共查到“物理学 variable separation”相关记录17条 . 查询时间(0.048 秒)
Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation
Fractional Fourier law Fractional heat conduction equation Spherical coordinate system The separation of variables Mittag–Leffler function
font style='font-size:12px;'>
2012/2/28
In this paper, using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system. The method of variable separatio...
Exact Solutions of the Coupled KdV System via a
Formally Variable Separation Approach
formal variable separation approach nonintegrable
model exact solutions solitary wave
font style='font-size:12px;'>
2007/8/15
2001Vol.36No.2pp.145-148DOI:
Exact Solutions of the Coupled KdV System via a
Formally Variable Separation Approach
LOU Sen-Yue,1,2 TANG Xiao-Yan1 and LIN Ji1,3,4
1 Appl...
Variable Separation Solutions in (1+1)-Dimensional and
(3+1)-Dimensional Systems via Entangled Mapping Approach
entangled mapping approach (1+1)-dimensional systems (3+1)-dimensional Burgers
system
font style='font-size:12px;'>
2007/8/15
2006Vol.46No.3pp.389-392DOI:
Variable Separation Solutions in (1+1)-Dimensional and
(3+1)-Dimensional Systems via Entangled Mapping Approach
DAI Chao-Qing,1 YAN Cai-Jie,2 and ZHAN...
A Series of Variable Separation Solutions and New Soliton Structures of
(2+1)-Dimensional Korteweg-de Vries Equation
variable separation approach (2+1)-dimensional KdV equation new soliton
excitation
font style='font-size:12px;'>
2007/8/15
2006Vol.46No.3pp.403-406DOI:
A Series of Variable Separation Solutions and New Soliton Structures of
(2+1)-Dimensional Korteweg-de Vries Equation
XU Chang-Zhi
Department...
A Variable Separation Approach to Solve the Integrable and Nonintegrable Models: Coherent Structures
of the (2+1)-Dimensional KdV Equation
variable separation approach
integrable and nonintegrable models (2+1)-dimensional solitons
font style='font-size:12px;'>
2007/8/15
2002Vol.38No.1pp.1-8DOI:
A Variable Separation Approach to Solve the Integrable and Nonintegrable Models: Coherent Structures
of the (2+1)-Dimensional KdV Equation
TANG Xiao-Yan1 ...
Variable Separation and Exact Separable Solutions for Equations of Type uxt=A(u,ux)uxx+B(u,ux)
nonlinear evolution equations variable separation generalized conditional
symmetry
font style='font-size:12px;'>
2007/8/15
2006Vol.45No.6pp.969-978DOI:
Variable Separation and Exact Separable Solutions for Equations of Type uxt=A(u,ux)uxx+B(u,ux)
ZHANG Shun-Li
Center for Nonlinear Studies, D...
Variable Separation and Derivative-Dependent Functional Separable Solutions
to Generalized KdV Equations
variable separation conditional symmetry
KdV-type equation
font style='font-size:12px;'>
2007/8/15
2003Vol.40No.4pp.401-406DOI:
Variable Separation and Derivative-Dependent Functional Separable Solutions
to Generalized KdV Equations
ZHANG Shun-Li1,2 and LOU Sen-Yue1,3,4
...
Multi-linear Variable Separation Approach to Solve a
(1+1)-Dimensional Coupled Integrable Dispersionless System
variable separation approach (1+1)-dimensional coupled integrable
dispersion-less system coherent structure
font style='font-size:12px;'>
2007/8/15
2005Vol.44No.5pp.779-782DOI:
Multi-linear Variable Separation Approach to Solve a
(1+1)-Dimensional Coupled Integrable Dispersionless System
SHEN Shou-Feng
Department of...
Variable Separation Solutions of Generalized Broer-Kaup System
via a Projective Method
extended projective method (2+1)-dimensional GBK
system exact solution localized excitation
font style='font-size:12px;'>
2007/8/15
2005Vol.43No.6pp.1061-1067DOI:
Variable Separation Solutions of Generalized Broer-Kaup System
via a Projective Method
ZHENG Chun-Long
Department of Physics, Zhejiang Li...
Multi-linear Variable Separation Approach to Solve a (2+1)-Dimensional
Generalization of Nonlinear Schrödinger System
variable separation approach (2+1)-dimensional generalization of nonlinear
Schrö dinger system coherent structure
font style='font-size:12px;'>
2007/8/15
2005Vol.43No.6pp.965-968DOI:
Multi-linear Variable Separation Approach to Solve a (2+1)-Dimensional
Generalization of Nonlinear Schrödinger System
SHEN Shou-Feng,1 ZHANG Jun,...
Notes on Multi-linear Variable Separation Approach
variable separation approach (1+1)-dimensional
Boiti system (2+1)-dimensional Burgers system
(2+1)-dimensional breaking soliton system (2+1)-dimensional Maccari system
font style='font-size:12px;'>
2007/8/15
2005Vol.43No.4pp.582-584DOI:
Notes on Multi-linear Variable Separation Approach
SHEN Shou-Feng,1 ZHANG Jun,1 and PAN Zu-Liang2
1 Department of Mathematics, Zhejiang Univ...
Variable Separation Approach to Solve a (2+1)-Dimensional Integrable
System
variable separation approach (2+1)-dimensional integrable
system localized coherent structure
font style='font-size:12px;'>
2007/8/15
2004Vol.41No.4pp.497-498DOI:
Variable Separation Approach to Solve a (2+1)-Dimensional Integrable
System
SHEN Shou-Feng,1 PAN Zu-Liang,1 and ZHANG
Jun2
1 Department of ...
Variable Separation and Derivative-Dependent Functional Separable
Solutions to Generalized Nonlinear Wave Equations
variable separation nonlinear wave derivative-dependent
functional separable solution
font style='font-size:12px;'>
2007/8/15
2004Vol.41No.2pp.161-174DOI:
Variable Separation and Derivative-Dependent Functional Separable
Solutions to Generalized Nonlinear Wave Equations
ZHANG Shun-Li1,2 and LOU Sen-Yue1,...
Variable Separation Solution for (1+1)-Dimensional Nonlinear Models Related to Schrodinger Equation
variable separation approach (1+1)-dimensional nonlinear models
solution of soliton
font style='font-size:12px;'>
2007/8/15
2004Vol.42No.4pp.568-572DOI:
Variable Separation Solution for (1+1)-Dimensional Nonlinear Models Related to Schrodinger Equation
XU Chang-Zhi1,2 and ZHANG Jie-Fang1
1 In...
Variable Separation Approach to Solve Nonlinear Systems
variable separation approach Redekopp system Burgers system
font style='font-size:12px;'>
2007/8/15
2004Vol.42No.4pp.565-567DOI:
Variable Separation Approach to Solve Nonlinear Systems
SHEN Shou-Feng,1 PAN Zu-Liang,1 and ZHANG Jun2
1 Department of Mathematics, Zhejiang...