管理学 >>> 管理科学与工程 工商管理 公共管理 人力资源开发管理 农林经济管理 图书馆、情报与档案管理 统计学
搜索结果: 1-10 共查到管理学 EM相关记录10条 . 查询时间(0.109 秒)
An Improved EM algorithm     Sensitivity analysis  Convergence analysis  Expectation Maximization  K-means  K-medoids       font style='font-size:12px;'> 2013/6/14
In this paper, we firstly give a brief introduction of expectation maximization (EM) algorithm, and then discuss the initial value sensitivity of expectation maximization algorithm. Subsequently, we g...
Dasgupta showed that a two-round variant of the EM algorithm can learn mixture of Gaussian distributions with near optimal precision with high probability if the Gaussian distributions are well separa...
We study properties and parameter estimation of finite-state homogeneous continuous-time bivariate Markov chains.
A Monte Carlo EM algorithm is considered for the maximum likelihood estimation of multivariate probit models.
We define and discuss the first sparse coding algorithm based on closed-form EM updates and continuous latent variables. The underlying generativemodel consists of a flexibly parameterized ‘spike-an...
EM algorithm and variants: an informal tutorial     EM algorithm  tutorial       font style='font-size:12px;'> 2011/6/16
The expectation-maximization (EM) algorithm introduced by Dempster et al [12] in 1977 is a very general method to solve maximum likelihood estimation problems. In this informal report, we review the...
Improved EM strategies, based on the idea of efficient data augmentation (Meng and van Dyk 1997, 1998), are presented for ML estimation of mixture proportions. The resulting algorithms inherit the s...
Hidden Markov models (HMMs) and related models have become stan- dard in statistics during the last 15C2 years, with applications in diverse areas like speech and other statistical signal processing...
We consider a set of n individuals described by p standardised variables, and we sup-pose that the individuals are previously selected from a population and the variables are a sample of variables ass...
We develop an active set algorithm for the maximum likelihood estimation of a log–concave density based on complete data. Building on this fast algorithm, we introduce an EM algorithm to treat arbitr...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...