搜索结果: 1-15 共查到“理论统计学 Inference”相关记录78条 . 查询时间(0.109 秒)
Inference from presence-only data;the ongoing controversy
presence-only data ongoing controversy
font style='font-size:12px;'>
2015/8/21
Presence-only data abounds in ecology, often accompanied by a background sample. Although many interesting aspects of the species’ distribution can be learned from such data, one cannot learn the over...
EigenPrism:Inference for High-Dimensional Signal-to-Noise Ratios
EigenPrism High-Dimensional Signal Noise Ratios
font style='font-size:12px;'>
2015/6/17
Consider the following three important problems in statistical inference, namely, constructing confidence intervals for (1) the error of a high-dimensional (p > n) regression estimator, (2) the linear...
Approximation of epidemic models by diffusion processes and their statistical inference
Approximation epidemic models diffusion processes their statistical inference
font style='font-size:12px;'>
2013/6/14
Among various mathematical frameworks, multidimensional continuous-time Markov jump processes $(Z_t)$ on $\N^d$ form a natural set-up for modeling $SIR$-like epidemics. In this study we extend the res...
Supplementary Appendix for "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"
Supplementary Appendix "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"
font style='font-size:12px;'>
2013/6/14
In this supplementary appendix we provide additional results, omitted proofs and extensive simulations that complement the analysis of the main text
Fast inference in generalized linear models via expected log-likelihoods
Fast inference generalized linear models expected log-likelihoods
font style='font-size:12px;'>
2013/6/14
Generalized linear models play an essential role in a wide variety of statistical applications. This paper discusses an approximation of the likelihood in these models that can greatly facilitate comp...
Simple Le Cam optimal inference for the tail weight of multivariate Student $t$ distributions: testing procedures and estimation
local asymptotic normality locally asymptotically maximin tests one-step estimation Student t distribution tail weight
font style='font-size:12px;'>
2013/6/14
The multivariate Student $t$ distribution is at the core of classical statistical inference and is also a well-known model for empirical financial data. In the present paper, we propose optimal (in th...
An ANOVA Test for Parameter Estimability using Data Cloning with Application to Statistical Inference for Dynamic Systems
Maximum Likelihood Estimation Over -Parametrized Models Markov Chain Monte Carlo Parameter Identifiability Differential Equation Models
font style='font-size:12px;'>
2013/6/14
Models for complex systems are often built with more parameters than can be uniquely identified by available data. Because of the variety of causes, identifying a lack of parameter identifiability typ...
Informative Bayesian inference for the skew-normal distribution
Bayesian inference Gibbs sampling Markov Chain Monte Carlo Multivariate skew-normal distribution Stochastic representation of the skew-normal Uni
font style='font-size:12px;'>
2013/6/14
Motivated by the analysis of the distribution of university grades, which is usually asymmetric, we discuss two informative priors for the shape parameter of the skew-normal distribution, showing that...
Mean field variational Bayesian inference for support vector machine classification
Approximate Bayesian inference variable selection missing data mixed model Markov chain Monte Carlo
font style='font-size:12px;'>
2013/6/14
A mean field variational Bayes approach to support vector machines (SVMs) using the latent variable representation on Polson & Scott (2012) is presented. This representation allows circumvention of ma...
Inference and testing for structural change in time series of counts model
time series of counts Poisson autoregression likelihood estimation change-point semi-parametric test
font style='font-size:12px;'>
2013/6/14
We consider here together the inference questions and the change-point problem in Poisson autoregressions (see Tj{\o}stheim, 2012). The conditional mean (or intensity) of the process is involved as a ...
Inference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method
Inference Kingman's Coalescent with Particle Markov Chain Monte Carlo Method
font style='font-size:12px;'>
2013/6/13
We propose a new algorithm to do posterior sampling of Kingman's coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Partic...
Approximate Inference for Observation Driven Time Series Models with Intractable Likelihoods
Observation Driven Time Series Models Approximate Bayesian Computation Asymptotic Con-sistency Markov Chain Monte Carlo
font style='font-size:12px;'>
2013/4/28
In the following article we consider approximate Bayesian parameter inference for observation driven time series models. Such statistical models appear in a wide variety of applications, including eco...
Statistical inference for Sobol pick freeze Monte Carlo method
Statistical inference Sobol pick freeze Monte Carlo method
font style='font-size:12px;'>
2013/4/28
Many mathematical models involve input parameters, which are not precisely known. Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact on the variabilit...
Statistical inference for discrete-time samples from affine stochastic delay differential equations
asymptotic normality composite likelihood consistency discrete time observation of continuous-time models prediction-based estimating functions pseudo-likelihood stochastic delay differential equation
font style='font-size:12px;'>
2013/4/28
Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to cal...
Generalized Thompson Sampling for Sequential Decision-Making and Causal Inference
Generalized Thompson Sampling Sequential Decision-Making Causal Inference
font style='font-size:12px;'>
2013/5/2
Recently, it has been shown how sampling actions from the predictive distribution over the optimal action-sometimes called Thompson sampling-can be applied to solve sequential adaptive control problem...