搜索结果: 1-11 共查到“理论统计学 recovery”相关记录11条 . 查询时间(0.125 秒)
On Pattern Recovery of The Fused Lasso
Fused Lasso Non-asymptotic Pattern recovery Preconditioning
font style='font-size:12px;'>
2016/1/20
We study the property of the Fused Lasso Signal Approximator(FLSA) for estimating a blocky signal sequence with additive noise.We transform the FLSA to an ordinary Lasso problem. By studying the prope...
Guaranteed Sparse Recovery under Linear Transformation
Guaranteed Sparse Recovery Linear Transformation
font style='font-size:12px;'>
2013/6/13
We consider the following signal recovery problem: given a measurement matrix $\Phi\in \mathbb{R}^{n\times p}$ and a noisy observation vector $c\in \mathbb{R}^{n}$ constructed from $c = \Phi\theta^* +...
Sparse approximation and recovery by greedy algorithms in Banach spaces
Sparse approximation recovery greedy algorithms Banach spaces
font style='font-size:12px;'>
2013/4/28
We study sparse approximation by greedy algorithms. We prove the Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA), a generalization of the Weak Orthogonal Matching Pursuit to ...
Signal Recovery in Unions of Subspaces with Applications to Compressive Imaging
Union of Subspaces Group Sparsity Convex Optimization Structured Sparsity Compressed Sensing
font style='font-size:12px;'>
2012/11/22
In applications ranging from communications to genetics, signals can be modeled as lying in a union of subspaces. Under this model, signal coefficients that lie in certain subspaces are active or inac...
Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning
Bayesian Learning Temporally Correlated Signal Recovery
font style='font-size:12px;'>
2011/3/23
We address the sparse signal recovery problem in the context of multiple measurement vectors (MMV) when elements in each nonzero row of the solution matrix are temporally correlated. Existing algorith...
Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning
Signal Recovery Temporally Correlated Bayesian Learning
font style='font-size:12px;'>
2011/3/22
We address the sparse signal recovery problem in the context of multiple measurement vectors (MMV) when elements in each nonzero row of the solution matrix are temporally correlated. Existing algorith...
Probabilistic Recovery of Multiple Subspaces in Point Clouds by Geometric lp Minimization
Detection and clustering of subspaces in point clouds hybrid linear modeling lp minimizationas relaxation for l0 minimization
font style='font-size:12px;'>
2010/3/10
We assume data independently sampled froma mixture distribution on the unit ball of RD withK+1
components: the first component is a uniform distribution on that ball representing outliers and the oth...
Manifold-Based Signal Recovery and Parameter Estimation from Compressive Measurements
Manifolds dimensionality reduction random projections Compressive Sensing spar-sity signal recovery parameter estimation
font style='font-size:12px;'>
2010/3/10
A field known as Compressive Sensing (CS) has recently emerged to help address the growing
challenges of capturing and processing high-dimensional signals and data sets. CS exploits the
surprising f...
Union support recovery in high-dimensional multivariate regression
Union support recovery high-dimensional multivariate regression
font style='font-size:12px;'>
2010/4/30
In the problem of multivariate regression, a K-dimensional response vector is regressed
upon a common set of p covariates, with a matrix B 2 RpK of regression
coecients. We study the behavior of ...
Recovery of edges from spectral data with noise——a new perspective
42A10 42A50 65T10
font style='font-size:12px;'>
2010/4/28
We consider the problem of detecting edges in piecewise
smooth functions from their N-degree spectral content, which is assumed
to be corrupted by noise. There are three scales involved: the
“smoot...
Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting
High-dimensional statistical inference subset selection signal denoising compressivesensing model selection
font style='font-size:12px;'>
2010/4/26
The problem of recovering the sparsity pattern of a fixed but unknown vector β ∈ Rp
based on a set of n noisy observations arises in a variety of settings, including subset selection in regression, ...