搜索结果: 1-15 共查到“知识要闻 原子核物理学”相关记录514条 . 查询时间(3.375 秒)
中国科学院目前国际最大超导磁体动态测试设施建成(图)
超导 聚变 高压
font style='font-size:12px;'>
2025/1/5
2024年12月29日,中国科学院合肥物质科学研究院等离子体物理研究所建设运行的国家重大科技基础设施“聚变堆主机关键系统”子系统“聚变工程堆中心螺管系统”完成首轮测试实验,最大测试电流达到稳态48千安,超过47千安的设计值。实验结果表明,该设施达到总储能406.7兆焦、可用测试磁体内径1500毫米、最高场强12特斯拉、接头电阻0.1纳欧,全面达到设计指标,成为目前国际尺寸最大、实验条件最完善的大型...
中国科学院青岛能源所在生物质化学链气化技术领域取得突破性进展(图)
合成 燃料 反应
font style='font-size:12px;'>
2024/12/20
发展生物质制备绿色液体燃料(如甲醇和航空煤油等)技术对保障我国能源安全、实现“双碳”战略目标具有重要意义。气化合成路线是以生物质为原料生产绿色液体燃料最高效的路线之一,目前主要瓶颈在于高效生物质气化技术的开发。生物质化学链气化技术采用载氧体代替传统的气化剂,通过载氧体在燃料反应器和空气反应器中循环,将空气中的氧传递给生物质,可实现免空分、低成本制取高品质合成气,在生物质气化合成绿色液体燃料领域极具...
中国科学院研究揭示生物运动情绪信息的多水平加工机制
信息 识别 反应
font style='font-size:12px;'>
2024/12/8
知觉与解读他人的情绪,对个体的社会交往和生存进化具有重要意义。面孔是常见的传递他人内在情绪状态的非言语社会线索。除面孔外,生命体的运动也传递着他人内在状态的重要线索。即便当生物运动由极度简化的、附着在头部和关节处的点光源运动表达时,人们依旧能够准确地识别出其中的情绪信息。目前,鲜有关于生物运动情绪信息加工机制的研究。
中国科学院近代物理研究所原子核质量精确测量揭示质子晕结构(图)
原子 测量 结构
font style='font-size:12px;'>
2024/12/27
2024年12月3日,中国科学院近代物理研究所的科研人员精确测量了一批奇特原子核的质量,确定了铝、磷、硫和氩元素的质子滴线,并提出了一种基于原子核质量揭示质子晕结构的新方法。相关成果于11月27日发表于《物理评论快报》(Physical Review Letters)。
国家自然科学基金委员会中国学者在暗物质探测领域取得进展(图)
探测 原子 分析
font style='font-size:12px;'>
2024/12/3
在国家自然科学基金项目(批准号:12090060、12325505)等资助下,上海交通大学刘江来、周宁教授牵头的PandaX合作组在暗物质探测领域取得进展,首次观测到太阳中微子和原子核相干弹性散射的迹象,研究成果以“基于PandaX-4T的中微子-原子核相干弹性散射首次探测太阳硼-8中微子(First indication of solar 8B neutrinos through coheren...
中国科大发现伽马射线驱动水相甲烷转化为包括甘氨酸的复杂有机分子(图)
伽马射线 有机分子 高能粒子
font style='font-size:12px;'>
2024/12/4
中国科学技术大学精准智能化学重点实验室、化学与材料科学学院黄伟新教授课题组研究了伽马射线驱动的气相和水相中CH4反应网络,观察到室温存在氧气的情况下水相CH4转化为各种复杂有机分子,在额外引入氨的情况下还生成了甘氨酸(图1)。研究成果以“g-Raydrivenaqueous-phasemethaneconversions intocomplexmolecules up toglycine”为题发表...
中国科学院上海分院宁波材料所在生物质加氢还原反应机理研究方面取得进展(图)
反应机理 循环 燃料
font style='font-size:12px;'>
2024/11/24
生物质作为一种有机可再生能源,通过高效转化为生物燃料和高值化学品,能够显著推动绿色化学和循环经济的发展。5-羟甲基呋喃(HMF)作为关键的平台化合物,可通过多种催化过程转化为高值化学品。其中氢化反应不仅能生产可再生燃料,还能用于合成生物基聚合物的单体,这有助于减少对化石燃料的依赖,促进可降解塑料和纤维的生产,推动环境友好材料和能源的应用。
中国科学院高能物理研究所中国散裂中子源(CSNS)加速器打靶运行功率达到170kW(图)
中子 加速器
font style='font-size:12px;'>
2024/11/4
2024年10月11日,中国散裂中子源(CSNS)打靶束流功率达到170kW并实现稳定供束运行,超过设计指标70%。通过在快循环同步加速器新增两台高性能的磁合金加载腔,提升束流功率至170kW,是验证CSNS-II束流功率升级路线的关键一步。CSNS加速器团队在前期大量机器研究和模拟工作基础上,利用暑期检修前后的两个短期调试窗口,充分探索调束新思路和挖掘机器性能极限,成功将打靶束流功率提升到170...
国家自然科学基金委员会中国学者在氢原子转移型反应方面取得进展(图)
原子 反应 催化
font style='font-size:12px;'>
2024/10/13
在国家自然科学基金项目(项目编号:22222101、22350006、22171012)资助下,北京大学朱戎研究员团队在氢原子转移型反应方面取得进展。相关成果以“类氢原子转移型的铜催化烯烃氢官能团化反应(Mimicking hydrogen-atom-transfer-like reactivity in copper-catalysed olefin hydrofunctionalization...
中国科学院物理研究所发现“笼目”超导体中低能集体激发模(图)
超导体 低能 机理
font style='font-size:12px;'>
2024/9/21
超导态是库珀对凝聚后形成的宏观量子液体态,由包含能隙的大小(Δ)及相位(ϕ)等超导序参量描述。基于超导序参量的集体激发模式的研究可以深入理解库珀对的配对对称性和轨道性质,对探索研究多分量的新型超导体以及超导配对机制具有重大的意义。目前,与超导相关的超导集体激发模仅在在少数几种常规超导体中被观测到。但是,对于揭示及描述超导体中激发模与超导电性的普适关系,还需要研究更多超导体,尤其是研究新型...
中国科大在探究地球核幔边界超低速区成因方面取得重要进展(图)
地球核 离子 反应
font style='font-size:12px;'>
2024/12/5
2024年8月21日,中国科学技术大学地球和空间科学学院王文忠特任教授与多位学者合作,通过第一性原理计算与机器学习相结合的方法,发现位于地球核幔边界高速区域的超低速区是由超离子态铁氢化物形成,相关成果以“Superionic iron hydride shapes ultralow-velocity zones at Earth’s core–mantle boundary”为题通过直投方式发表在...
中国科学院近代物理所在致密核物质性质理论研究中获进展(图)
中子 演化 量子色动力学
font style='font-size:12px;'>
2024/8/15
2024年8月13日,中国科学院近代物理研究所核物理中心的雍高产研究员在核物质相结构与中子星“超子谜团”研究中取得进展,相关研究论文发表在Physics Letters B上。核物质相结构的探测研究是当前国际大科学装置(如美国RHIC-STAR、德国FAIR、俄罗斯NICA、日本J-PARC以及我国HIAF等)前沿研究热点之一,其对人们探索宇宙早期、晚期演化奥秘以及对非微扰量子色动力学强相互作用的...
中国科学院沈阳分院大连化物所实现一氧化碳促进的协同羰基化(杂)芳基迁移反应(图)
反应 能源 催化
font style='font-size:12px;'>
2024/8/16
2024年8月12日,中国科学院大连化学物理研究所生物能源研究部催化羰基化研究组研究员吴小锋团队在催化羰基化重排反应研究方面取得新成果,开发出一种可见光诱导下由羰基化触发的(杂)芳基远程迁移反应,CO的插入是(杂)芳基能够发生重排的关键,该反应体系能够在温和条件下合成一系列含氟烷基和杂环的1,4-二羰基化合物。
中国科学院沈阳分院大连化物所建成百米长卷对卷柔性钙钛矿组件产线(图)
柔性钙钛矿 核能
font style='font-size:12px;'>
2024/7/19
2024年7月9日,中国科学院大连化学物理研究所承担的科研项目“柔性大面积高效稳定钙钛矿太阳能电池及产线研发”取得新进展,建成卷对卷连续制备柔性钙钛矿组件产线,连续制备长度达到100m,研发的350mm×1050mm尺寸的大面积柔性组件效率高达17.75%,连续制备的长度和效率均处于国际先进水平。该项目由中国核能电力股份有限公司委托,大连化物所太阳能研究部薄膜硅太阳电池组研究员刘生忠团队承担完成。
中国科学院近代物理研究所科研人员首次在实验上建立镧-120的激发态结构(图)
原子核 质子 中子
font style='font-size:12px;'>
2024/7/21
2024年7月8日,中国科学院近代物理研究所的科研人员与来自法国、芬兰、南非和英国等国家的合作者首次成功测量了β缓发质子核镧-120的激发态结构,在质子滴线原子核的质子中子相互作用和形状演化的研究中取得重要进展,相关成果于2024年7月8日发表在Physics Letters B上。