搜索结果: 1-15 共查到“知识库 教育统计学”相关记录58条 . 查询时间(2.289 秒)
浙江工商大学班主任管理办法
浙江工商大学 统计与数学学院 班主任管理办法
font style='font-size:12px;'>
2023/6/1
浙江工商大学班主任管理办法详情见附件
浙江工商大学统计学院班主任工作考核制度
浙江工商大学 统计与数学学院 班主任工作考核制度
font style='font-size:12px;'>
2023/6/1
浙江工商大学统计学院班主任工作考核制度详情见附件
浙江工商大学班主任工作考核表
浙江工商大学 统计与数学学院 班主任工作考核
font style='font-size:12px;'>
2023/6/1
浙江工商大学班主任工作考核表详情见附件
浙江工商大学创新创业学分审核汇总表
浙江工商大学 统计与数学学院 创新创业 学分审核汇总
font style='font-size:12px;'>
2023/6/1
浙江工商大学创新创业学分审核汇总表详情见附件
浙江工商大学已获得学分项目信息修改汇总表
浙江工商大学 统计与数学学院 学分项目信息修改
font style='font-size:12px;'>
2023/6/1
浙江工商大学已获得学分项目信息修改汇总表详情见附件
浙江工商大学创新创业和素质拓展学分部分学校组织项目名单
浙江工商大学 统计与数学学院 创新创业 素质拓展
font style='font-size:12px;'>
2023/6/1
浙江工商大学创新创业和素质拓展学分部分学校组织项目名单详情见附件
Relevance As a Metric for Evaluating Machine Learning Algorithms
Machine learning algorithms performance metric proba-bilistic approach
font style='font-size:12px;'>
2013/4/28
In machine learning, the choice of a learning algorithm that is suitable for the application domain is critical. The performance metric used to compare different algorithms must also reflect the conce...
ABC Reinforcement Learning
ABC Reinforcement Learning
font style='font-size:12px;'>
2013/4/28
This paper introduces a simple, general framework for likelihood-free Bayesian reinforcement learning, through Approximate Bayesian Computation (ABC). The main advantage is that we only require a prio...
On Sparsity Inducing Regularization Methods for Machine Learning
Sparsity Inducing Regularization Methods for Machine Learning
font style='font-size:12px;'>
2013/5/2
During the past years there has been an explosion of interest in learning methods based on sparsity regularization. In this paper, we discuss a general class of such methods, in which the regularizer ...
Robust and Trend Following Student's t Kalman Smoothers
Robust and Trend Following Student's t Kalman Smoothers
font style='font-size:12px;'>
2013/5/2
We present a Kalman smoothing framework based on modeling errors using the heavy tailed Student's t distribution, along with algorithms, convergence theory, open-source general implementation, and sev...
Sparse Projections of Medical Images onto Manifolds
Sparse Projections Medical Images Manifolds
font style='font-size:12px;'>
2013/5/2
Manifold learning has been successfully applied to a variety of medical imaging problems. Its use in real-time applications requires fast projection onto the low-dimensional space. To this end, out-of...
Separable Dictionary Learning
Separable Dictionary Learning
font style='font-size:12px;'>
2013/5/2
Many techniques in computer vision, machine learning, and statistics rely on the fact that a signal of interest admits a sparse representation over some dictionary. Dictionaries are either available a...
Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions
Online Learning Markov Decision Processes Adversarially Chosen Transition Probability Distributions
font style='font-size:12px;'>
2013/5/2
We study the problem of learning Markov decision processes with finite state and action spaces when the transition probability distributions and loss functions are chosen adversarially and are allowed...
Linear NDCG and Pair-wise Loss
NDCG Learning to rank Web content quality assessment
font style='font-size:12px;'>
2013/4/28
Linear NDCG is used for measuring the performance of the Web content quality assessment in ECML/PKDD Discovery Challenge 2010. In this paper, we will prove that the DCG error equals a new pair-wise lo...
Learning Stable Multilevel Dictionaries for Sparse Representation of Images
Learning Stable Multilevel Dictionaries Sparse Representation Images
font style='font-size:12px;'>
2013/4/28
Dictionaries adapted to the data provide superior performance when compared to predefined dictionaries in applications involving sparse representations. Algorithmic stability and generalization are de...