理学 >>> 数学 >>> 数理逻辑与数学基础 数论 代数学 代数几何学 几何学 拓扑学 数学分析 非标准分析 函数论 常微分方程 偏微分方程 动力系统 积分方程 泛函分析 计算数学 概率论 数理统计学 应用统计数学 运筹学 组合数学 离散数学 模糊数学 应用数学 数学其他学科
搜索结果: 1-15 共查到数学 Lasso相关记录20条 . 查询时间(0.065 秒)
We consider the problem of learning a coefficient vector x0 ∈ RN from noisy linear observation y = Ax0 + w ∈ Rn. In many contexts (ranging from model selection to image processing) it is desirable to...
ON THE “DEGREES OF FREEDOM” OF THE LASSO     Degrees of freedom  LARS algorithm  lasso  model selection  SURE  unbiased estimate       font style='font-size:12px;'> 2015/8/21
We study the effective degrees of freedom of the lasso in the framework of Stein’s unbiased risk estimation (SURE). We show that the number of nonzero coefficients is an unbiased estimate for the degr...
Forward stagewise regression and the monotone lasso     regression  lasso  stagewise       font style='font-size:12px;'> 2015/8/21
We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron,Hastie, Johnstone & Tibshirani (2004) it is proved that the le...
Sparse inverse covariance estimation with the lasso     Sparse inverse  covariance estimation  the lasso       font style='font-size:12px;'> 2015/8/21
We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm— the ...
A note on the group lasso and a sparse group lasso     group lasso  sparse group lasso       font style='font-size:12px;'> 2015/8/21
We consider the group lasso penalty for the linear model. We note that the standard algorithm for solving the problem assumes that the model matrices in each group are orthonormal. Here we consider a ...
In ordinary regression, imposition of a lasso penalty makes continuous model selection straightforward. Lasso penalized regression is particularly advantageous when the number of predictors far exceed...
We consider rules for discarding predictors in lasso regression and related problems, for computational efficiency. El Ghaoui et al. (2010) propose “SAFE” rules, based on univariate inner products bet...
The graphical lasso [5] is an algorithm for learning the structure in an undirected Gaussian graphical model, using ℓ1 regularization to control the number of zeros in the precision matrix Θ = Σ...
We propose several methods for estimating edge-sparse and nodesparse graphical models based on lasso and grouped lasso penalties.We develop efficient algorithms for fitting these models when the numbe...
We consider the sparse inverse covariance regularization problem or graphical lasso with regularization parameter λ. Suppose the sample covariance graph formed by thresholding the entries of the sampl...
The LASSO risk for gaussian matrices     Noisy  linear observation vector  image processing  the matrix sequence       font style='font-size:12px;'> 2015/8/20
We consider the problem of learning a coecient vector x0 2 R N from noisy linear observation y = Ax0 + w 2 R n. In many contexts (ranging from model selection to image processing) it is desirable to ...
Forward stagewise regression and the monotone lasso     regression  asso  stagewise       font style='font-size:12px;'> 2015/8/20
We also study a condition under which the coefficient paths of the lasso are monotone, and hence the different algorithms coincide. Finally, we compare the lasso and forward stagewise pro...
Proximal methods for the latent group lasso penalty     Structured sparsity  proximal methods  regularization       font style='font-size:12px;'> 2012/11/23
We consider a regularized least squares problem, with regularization by structured sparsity-inducing norms, which extend the usual $\ell_1$ and the group lasso penalty, by allowing the subsets to over...
We consider the problem of estimating a function $f_{0}$ in logistic regression model. We propose to estimate this function $f_{0}$ by a sparse approximation build as a linear combinaison of elements ...
The Lasso Problem and Uniqueness     The Lasso Problem  Uniqueness  Statistics Theory       font style='font-size:12px;'> 2012/6/14
The lasso is a popular tool for sparse linear regression, especially for problems in which the number of variables p exceeds the number of observations n. But when p>n, the lasso criterion is not stri...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...