理学 >>> 数学 >>> 数理逻辑与数学基础 >>> 演绎逻辑学 证明论 递归论 模型论 公理集合论 数学基础 数理逻辑与数学基础其他学科
搜索结果: 1-15 共查到数理逻辑与数学基础 1/3-2/3 Conjecture相关记录25条 . 查询时间(0.062 秒)
The Borel conjecture considers the obstruction from homotopy equivalence to homeomorphism for aspherical manifolds. The torus is the first computed case of Borel conjecture with the idea of splitting ...
We prove a conjecture of Knutson asserting that the Schubert structure constants of the cohomology ring of a two-step flag variety are equal to the number of puzzles with specified borde...
A Vaught’s conjecture toolbox     Vaught’s conjecture  toolbox       font style='font-size:12px;'> 2015/9/25
A Vaught’s conjecture toolbox.
Three red herrings around Vaught's conjecture     Three red herrings  Vaught's conjecture       font style='font-size:12px;'> 2015/9/25
We give a model theoretic proof that if there is a counterexample to Vaught’s conjecture there is a counterexample such that every model of cardinality ℵ1 is maximal (strengthening a result of ...
I. P. GOULDEN, D. M. JACKSON AND R. VAKILConjecture. The approach is through the Ekedahl-Lando-Shapiro-Vainshtein theorem, which establishes the \polynomiality" of Hurwitz numbers, from which we pick...
I. P. GOULDEN, D. M. JACKSON AND R. VAKILConjecture. The approach is through the Ekedahl-Lando-Shapiro-Vainshtein theorem, which establishes the \polynomiality" of Hurwitz numbers, from which we pick...
Abstract: We introduce a natural generalization of Borel's Conjecture. For each infinite cardinal number $\kappa$, let {\sf BC}$_{\kappa}$ denote this generalization. Then ${\sf BC}_{\aleph_0}$ is equ...
We outline a proof of a remarkable conjecture of Labastida-Mari32;no-Ooguri-Vafa about certain new algebraic structures of quantum link invariants and the integrality of infinite family of new topo...
We prove the Conley conjecture for negative monotone, closed symplectic manifolds, i.e., the existence of infinitely many periodic orbits for Hamiltonian diffeomorphisms of such manifolds.
A note on Haynes-Hedetniemi-Slater Conjecture     Haynes-Hedetniemi-Slater Conjecture  math       font style='font-size:12px;'> 2010/11/19
We notice that Haynes-Hedetniemi-Slater Conjecture is true (i.e. $\gamma(G) \leq \frac{\delta}{3\delta -1}n$ for every graph $G$ of size $n$ with minimum degree $\delta \geq 4$, where $\gamma(G)$ is t...
A short proof of Kontsevich cluster conjecture     Kontsevich cluster conjecture  math       font style='font-size:12px;'> 2010/11/8
We give an elementary proof of the Kontsevich conjecture that asserts that the iterations of the noncommutative rational map K_r:(x,y)-->(xyx^{-1},(1+y^r)x^{-1}) are given by noncommutative Laurent po...
Let $K$ be a complete discrete valued field of characteristic zero with residue field $k_K$ of characteristic $p > 0$. Let $L/K$ be a finite Galois extension with the Galois group $G$ and suppose tha...
An improved bound for the Manickam-Miklós-Singhi conjecture     the Manickam-Miklós-Singhi conjecture  math       font style='font-size:12px;'> 2010/11/18
We show that for $n>k(4e\log k)^k$ every set $\{x_1,..., x_n\}$ of $n$ real numbers with $\sum_{i=0}^{n}x_i \geq 0$ has at least $\binom{n-1}{k-1}$ $k$-element subsets of a non-negative sum. This is ...
On a conjecture of G. Malle and G. Navarro on nilpotent blocks     conjecture  G. Malle  G. Navarro  nilpotent blocks       font style='font-size:12px;'> 2010/11/18
In a recent article, G. Malle and G. Navarro conjectured that the $p$-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Bro...
We formulate the conjecture that the restriction morphism from free closed iterated integrals to closed iterated integrals on loops is onto. We show that, given the conjecture holds, the module of hig...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...