管理学 >>> 管理科学与工程 工商管理 公共管理 人力资源开发管理 农林经济管理 图书馆、情报与档案管理 统计学
搜索结果: 1-15 共查到管理学 rank相关记录44条 . 查询时间(0.093 秒)
Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) c...
We present a heuristic for minimizing the rank of a positive semidefinite matrix over a convex set. We use the logarithm of the determinant as a smooth approximation for rank, and locally minimize thi...
Rank Minimization and Applications in System Theory     Rank Minimization  Applications  System Theory       font style='font-size:12px;'> 2015/7/10
In this tutorial paper, we consider the problem of minimizing the rank of a matrix over a convex set. The Rank Minimization Problem (RMP) arises in diverse areas such as control, system identification...
Generalized Low Rank Models     Generalized Low Rank Models       font style='font-size:12px;'> 2015/7/8
Principal components analysis (PCA) is a well-known technique for approximating a data set represented by a matrix by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets c...
Rank 2 Integrable Systems of Prym Varieties     Level  integrable system  Prym varieties       font style='font-size:12px;'> 2014/12/29
Rank 2 Integrable Systems of Prym Varieties.
A Rank Minrelation - Majrelation Coefficient     RankMajrelationCoefficient       font style='font-size:12px;'> 2013/6/14
Improving the detection of relevant variables using a new bivariate measure could importantly impact variable selection and large network inference methods. In this paper, we propose a new statistical...
Gaussian processes (GP) are Bayesian non-parametric models that are widely used for probabilistic regression. Unfortunately, it cannot scale well with large data nor perform real-time predictions due ...
This paper considers sparse spiked covariance matrix models in the high-dimensional setting and studies the minimax estimation of the covariance matrix and the principal subspace as well as the minima...
This paper considers sparse spiked covariance matrix models in the high-dimensional setting and studies the minimax estimation of the covariance matrix and the principal subspace as well as the minima...
Logarithmic Quantile Estimation for Rank Statistics     Quantile Estimation  Rank Statistics       font style='font-size:12px;'> 2013/6/14
We prove an almost sure weak limit theorem for simple linear rank statistics for samples with continuous distributions functions. As a corollary the result extends to samples with ties, and the vector...
Tensors of Nonnegative Rank Two     nonnegative tensor rank  latent class model  binary tree model       font style='font-size:12px;'> 2013/6/14
A nonnegative tensor has nonnegative rank at most 2 if and only if it is supermodular and has flattening rank at most 2. We prove this result, then explore the semialgebraic geometry of the general Ma...
In this paper, we propose a low-rank approximation method based on discrete least-squares for the approximation of a multivariate function from random, noisy-free observations. Sparsity inducing regul...
Partial Transfer Entropy on Rank Vectors     Partial Transfer Entropy  Rank Vectors       font style='font-size:12px;'> 2013/4/28
For the evaluation of information flow in bivariate time series, information measures have been employed, such as the transfer entropy (TE), the symbolic transfer entropy (STE), defined similarly to T...
Sparse PCA through Low-rank Approximations     Sparse PCA  Low-rank Approximations       font style='font-size:12px;'> 2013/4/27
We introduce a novel algorithm that computes the $k$-sparse principal component of a positive semidefinite matrix $A$. Our algorithm is combinatorial and operates by examining a discrete set of specia...
Sharp analysis of low-rank kernel matrix approximations     Sharp analysis  low-rank kernel  matrix approximations       font style='font-size:12px;'> 2012/9/18
We consider supervised learning problems within the positive-definite kernel framework,such as kernel ridge regression, kernel logistic regression or the support vector machine. With kernels leading t...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...